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A STUDY OF SEVERAL THEORETICAL. METHODS FOR COMPUTING
THE ZERO-LIFT WAVE DRAG OF A FAMIT.Y OF OPEN-NOSED
BODIES OF REVOLUTION IN THE MACH NUMBER RANGE
OF 2,0 TO 4.0

By Leroy L. Presley and Emmet A. Mossman

SUMMARY

The wave drag of a family of open-nosed bodies of revolution was
computed by six epproximate theories, first-order perturbation theory,
second-order perturbation theory, generalized shock-expansion theory,
second~-order shock-expansion theory, tangent-wedge theory, and impact
theory, and by the method of characteristics for Mach numbers between
2.0 and 4.0. The best asgreement wlith the method of characteristics was
provided by second-order perturbation theory and second-~order shock-
expansion theory with the latter being the most attractive from the
standpoint of computing time required versus accuracy obtained.

The wave drag, for bodies of the type investlgated in this study
with the same initial lip angle and the same diameter ratio (initial %o
maximum diemeter), was found to increase sharply for fineness ratios less
than 3 but to be nearly constant for fineness ratios above 3. The wave
drag was found to decrease nearly linearly as the diameter ratio increases
for bodies having the seme initial 1ip angle and fineness ratio.

An approach 1s given for edapting the method of characteristics to
avtomatic computing machine procedure.

INTRODUCTION

For alrcraft configurations employing a pod-nacelle arrangement to
house an air breathing propulsion system, the externsl wave drag of the
engine housing can be a significent portion of the total drag of the
gircraft. In the absence of systematic experimental data to aid in
estimating this wave. drag, the usudl approach is to calculate it theoret-
ically. At present there are a number of different theoretical methods
which can be used for such calculations. However, the results obtained
from the wvarious methods are not consistent over a wilide range of Mach
numbers and body shapes and the computation time differs widely among
the methods. The investigation described herein was made, therefore,
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to compare the theoretical wave drag as computed using six approximate
methods with that from the method of charascteristics in order that a
choice from the viewpoint of average computing time required and

accuracy obtalned could be made. The theories which were compared to

the method of characteristics were: first-order perturbation theory

(refs. 1 and 2), second-order perturbation theory (ref. 2), generalized
shock-expansion theory (refs. 3 and L), second-order shock-expansion
theory (ref. 5), tangent-wedge theory (ref. 6), and impact theory (ref. 7).

To provide a reference for the comparison, the study was conducted
for a family of open-nosed bodies of revolution having e fineness ratio
of 5, a ratio of initial to maximum diameter of 0.742, and 1lip angles
between 1.478° and 35.844°., This fawily was selected since its contours
are representative of the nacelles of present day pod-nacelle arrange-
ments for Jet englnes. Thus the wave-drag cheracteristics of such a
famlly are of interest in themselves. The effects of varying fineness
ratio end diameter ratio were also determined using the method of charac-
teristics and generalized shock-expansion theory.

THEORETICAL METHODS

Although the various theoretical methods used in the present study
have been discussed in detail in thelr respective references, it is con-
sidered appropriate to this report to discuss briefly each of the methods,
Polnting out in particular their approach to the solution of the super-
sonic flow fleld about an open-nosed body of revolution and their expected
range of applicability. All of the theories used in this analysis have
as thelr basis a solution of the gasdynamlcs equation shown below:

u2\ ou v2\ S uv ov v
(DR 6-DEBED1e o

where the symbols are defined 1n appendix A. Since this equation, which
is appliceble to any steady inviscid flow of a perfect gas, 1s nonlinear,
simplified methods of solutlon must be used for most problems. The
simplified methods of solution which have resulted in the theories used
in this study are: numerical solution of equation (1), linearization

of equation (1) with subsequent analytical solution of the linearized
equation, end approximate solutions of equation (1) which are applicable
to certain flow regimes. In the application of the theories, the follow-
ing conditions were imposed:

(1) The flow entered the nose of the body at supersonic speed (i.e.,
mass-flow ratio of unity).

(2) The bodies were immersed in an ideal ges.
(3) The bodies were at zero angle of attack.
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Method of Characteristics

One method of solving the gasdynamics equations is by numerical
means. Such a method is greatly facilitated in the present case of
supersonic flow since the gasdynamics equation is a hyperbolic differ-
ential equation and of a type that is integrable on characteristic sur-
faces which correspond to Mach lines. It is then necessary to rewrite
equation (1) in a form suitable for numerical integration along the Mach
lines, and several different forms have been derived (refs. 8, 9, and 10).
One form of the compatability equation for the method of characteristics
which was considered to be the most satisfactory for the present study
since it contains only two flow-field varigbles is as follows:1

dp:??x(dbi%sinpsin a) (2)
where
=4")
N Fmom (3)

with the upper sign referring to the first family Mach line and the lower
to the second family Mach line as shown in figure 1. Equation (2)
expresses The relationship between static pressure, stream angle, and
Mech angle along Mach lines in the flow field and is applicable to either
rotational or irrotational steady flow of an isoenergetic gas. When
applied to rotational flow, as in this study, the change in entropy
normal to the streamlines 1s taken into account by considering the change
in total pressure along the Mach lines. This method 1s limited to bodies
with supersonic flow behind the nose shock.

In the actual solution of the flow by the method of characteristics,
the compatebility equation is put into finlte difference form and solved
point for point in the flow field. If solved by purely numerical means,
the computations are very long and laborious for any practical problems
and become feasible only with the use of automatic .computing machines.

In the present study, the computations were made using an automatic
computing machine. The equations used as well as & discussion of some
consliderations in the adaption of the method of characteristics to
auvtomatic computing machine procedure are given in appendix B.

First-Order Theory

In contrast to the numerical integration of the nonlinear gasdynamics
equation by the method of characteristics, first-order theory introduces

1This form is not given directly in elther references 6, 9, or 10
but can be obtalned by a suitable combination of equations 3.21 to 3.23

in Chapter I of reference 10.
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a perturbation function into the equation and linearizes the resulting
expresslon so that it may be solved analytlicelly. This is done by con-
sidering the magnitude of the velocities in the following msnner

=U + up v = vp ()

up and vp < U Up and vp XK a

and defining a perturbation potential such that
='§2 Vo = ég
“p ox P ar

Equation (1) can be put into the following form

BN =R BN N EX PEE 1 e Sy

If the squares and products of derivatives of the perturbation potential
are neglected, the following equation results

o _ g2 ELJP 19 _ 0 6
dr2 P d3x2 r or (6

vhere B2 = M2-1. Equation (6) is the linearized form of the potential
flow equation. Details of the integratlion of this equation are given in
references 1 and 2. Such a solutlion is spplicable to the calculation of
flow fields at values of the hypersonic similarity paremeter, MbBo, less
than 1.0. It in effect neglects entropy losses due to the presence of
the body since entropy losses are of third order in the perturbation
potential.

Second-Order Theory

The third approach to obtaining a solution of equation (1) is o
use an iteration procedure, an approach first considered by Busemeann
and later extended by Van Dyke (ref. 2). For this method, a first-order
solution is obtained as described previously. This solution is substi-
tuted into the right-hand side of equation (5) and a second-order
perturbation potential is found. The method of solution is given in
reference 1l. Therein it was stated that the initial angularity of the
body must be less than the free-stream Mach angle.

In the present study the computations were done using an automatic
computing machine since they are lengthy When done by hand. The initial
angularity of the bodlies was restricted to 13 or less because of the
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limitations in the automatic computing machine program, an angle con-
siderably less than that permitted by the theory. This theory is also
applied only in the range of Mbo < 1.0.

Generaldized Shock-Expansion Method

A method which has as its basis an spproximste solution of the exact
equation of motion is the well-known generalized shock-expansion theory.
The approximation made for this theory consists of neglecting the term
(ds/r)sin pu sin & of equation (2) for cases in which the rate of change
of surface angle of the body is large compared to its dlvergence. The
resulting expression is seen to be a differentisl form of the Prandtl-Meyer
equation. The flow field downstream of the nose shock wave can then be
considered of the Prandtl-Meyer type. The aforementioned assumptlion
regarding the body shape is made in this theory so it could be expected
o become accurate when M bo >> 1.0 and when the ares ratio of the body
(maximum to initial area) is near 1.

The application of this method begins by first approximating the
body by a series of straight-line elements, tangent to the original body.
The flow at the nose i1s defined by means of the Rankine-~Hugoniot relations
for an oblique shock wave. Since the flow downstream of the nose is of
the Prandtl-Meyer type, the pressure can be found on any tangent line if
the pressure and Mach number on the preceding tangent-line element are
known. The pressure is taken to be constant on any glven btangent-line
element. The method is limited as is the method of characteristies to
bodies that have supersonic flow behind the nose shock wave. The calcu-
lations for this method cen be made efficiently using a desk calculator
and the tables and charts of reference 12.

In the present investigation, the body contour was approximated by
13 stralght-line elements.

Second-Order Shock-Expansion Theory

Second~order shock-expansion theory was developed to provide a
closer approximation to the flow field for the cases when M9, i1s near
1.0. This was done by developing an approximation to the part of equa-
tion (2) that was neglected for the generalized method. Two slignificant
differences from the generalized method arise out of this closer approxi-
mation., First, the exact pressure gradient at the nose of the body is
found from the method of characteristies. Secondly, along each tangent
line used to approximate the body contour, the pressure is found to vary
exponentially. The asymptote of the exponential pressure varlation is
assumed to be equal to the pressure on a cone having the same slope as
the tangent~line element and at the same free-stream Mach number.
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The applicatlon of this method is similar to that of the generalized
method except the pressure gradient on each tangent line is found by the
relatlons given in reference 5. The results can be obtained by means of
a desk calculator but the process is somewhat tedious.

In the present investigation, the body contour was epproximeted by
13 stralight-line elements.

Tangent-Wedge Method

An approximetion to the generalized shock~expansion method is the
tangent-wedge method. This spproximation is based on the assumption that
the pressure on the hody at eny polnt is a Function of the net flow deflec-
tion sngle from the free stream. Thus in this method, the pressure at any
point on the body can be found from the Rankine-Hugoniot relations for
oblique shock waves (for bodies inclined into the free stream) or the
Prandtl-Meyer relations (for body surfaces inclined away from the free
stream) in which the deflection angle and the upstream Mach number used
in these relations are the locel angle of the body and the free-stream
Mach number, respectively. The method 1s therefore limited to bodies with
angularity less than the detachment angle of a two-dimensional shock wave
and could be expected to become accurate in the same regions as the gener-
alized shock-expansion method. The computations for this method are very
gimple end can be mede efficiently by means of a desk calculator and the
charts of reference 12,

In the present investigation, the pressure was computed at lh points
along the body.

Impact Theory

A dlrect epproximation to the tangent-wedge method for certain flow
flelds has resulted in defining an area where Newtonlen impact theory
becomes applicable. For flows at infinite Mach number, wherein y = 1.0
and the shock wave is coincldent with the body contour, the expression
for the pressure coefficlent at any point on the body as glven by the
tangent-wedge method can be shown to reduce to

= 2
CP = 2 sin<d

This expresslion was obtained by Newton by neglecting centrifugsl forces and
assuming that the component of the momentum of fThe free-stream sir that is
normal to the body surface is absorbed, thereby creating a force on the
surface, This theory which is applicable to any body contour would be
expected to become applicable for M §>> 1.0. Computations for this theory
are very simple end can be made efficiently using a desk calculator. ’

In the present investigation, the pressure was computed at 14 points
along the body.
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COMPUTATIONS

Body Contours

Throughout this investigation, a family of profiles whose contours
ere & function of initiel 1ip angle, B,, the dlameter ratio do/dy and
the fineness ratio 1/d, was used. The equation relating the bodies is
glven in reference 13 and has the following form:

Ty = rm - (rm-ro) (1-x)" (8)
where 17 1is the relating parameter for the family of curves and is
defined by

tan B,

m (9)
r(1 -

The diameter retio, dy/dy, was varied from 0.707 to 0.898. However,
for the majority of the investigation, a value of 0.742 was used. This
diemeter ratlo is in the range of values considered in reference 1L and
of those necessary to envelop existing turbojet and ramjet engines at
about M, = 3.0. The dlameter ratio was veried while the initisl 1lip
angle and fineness ratlo were held constant.

The majority of the theoretical investigation was conducted with
profiles having a fineness ratio of 5. These profiles are shown in fig-
ure 2. A small part of the theoreticsal investigation was concerned with
varying the fineness ratio of the bodies from 0.625 to 10 while the
initial 1ip angle and diameter ratio were held constant.

Wave-Drag Computation

The wave drag was obtained from the following relationship

Cp = f Cpd (%) (10)

The methods discussed previously were used to calculate Cp as a function
of Ab/Ao. The above integration was carried out graphically.

RESULTS AND DISCUSSION
Pressure Distributions

The distribution of the external pressure coefficients as computed
by the séven theories described earlier is presented in figures 3 through
9, and are in the form of static-pressure coefficient, Cp, as a function

of local area ratio, Ab/Ao These curves were subsequently integrated
to obtaln the wave-drag coefficlents.
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Comparison of typlcal pressure distributions is shown in figure 10.
From these curves three general comparisons cen be made as to the agree-~
ment between the method of .characteristics and the various approximete
theorles, The first point of comparison is the magnitude of the initial
pressure rise at the nose of the body. Generalized shock~expansion,
second~order shock-expansion, and tangent-wedge theory (omitted from the
figures because of its closeness to generalized shock-expansion theory)
have the same initlal static-pressure coefficlent as the method of
characteristics since all of these theories use the exact pressure at
the nose. VFirst-order perturbation theory and ilmpact theory give lower
values of initlal static-pressure coefficient than the method of charac-
teristics vhereas second-order perturbation theory glves a higher value.
The second point of comparison is that only second-order perturbation
theory and second-order shock-expansion theory prediet an initial pres-
sure gradient which is slimilar to that predicted by the method of
characteristics., It should be mentioned that the initial pressure
gradient of the second-order shock-expansion method is inherently iden-
tical to that of the method of characteristics. Finally, the predicted
varlation of static-pressure coefficlent downstream of the nose differs
for the various theories. For a curved body such as investigated herein,
the method of characteristics predicts positive pressure coefficients
over most of the body and an overexpansion wlth resulting negative static-
pressure coefficients near the base of the body. Three of the theories,
first-~ and second-order perturbation theories, and second-~order shock-
expanslon theory, compare favorably with the method of characteristics
for predicting negative static-pressure coefflcients for curved bodles.
However, positlve pressure coefficients were predicted over the entire
body by generalized shock-expansion theory, tangent-wedge theory, and
lmpact theory. To sumarize, the results of figure 10 indicate that
second~order perturbation theory, and second-order shock-expansion theory
provide the best agreement with the method of characteristics for these —
body shspes and Mach numbers. o

The varietion of the static-pressure coefficient for bodies of
varying finemess ratio (1/dp of 0.625 to 10), but with constant initial
1lip angle and diemeter ratio, is shown in figure 11 for M, = 2.5. These
distributions were computed by the generallized shock-expansion theory
(fig. 11(a)) and the method of characteristics (fig. 11(b)). Both
theories indicate that at a given area ratio (Ap/Ao), a lower static
pressure can be obtained with a body of higher fineness ratio. The
significance of this will be discussed later.

The effect upon the static-pressure coefficient distributions of
verying the diemeter ratio, while the initial 1ip engle, fineness ratio,
and M, are held constant, is shown in figure 12. It can be seen that
the pressure distributions for the bodies are similar in that at the same
proportionate area, the pressure is approximetely the same.
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WAVE DRAG

The theoretical wave-drag coefficients for the bodies having =a
fineness ratio of 5 and a diameter ratio of 0.T42 at Mach numbers of
2.0, 2.5, 3.0, and 4.0 are presented in figure 13. As indicated, there
is a large difference in the results as obtalned from the various methods
throughout the Mach number range of the investigation. These differences
are seen better in figure 1h in vhich the wave drag computed by the method
of characteristics is used as a reference and the error in the wave drag
as computed by the six approximate methods is shown. The error 1s given
as a function of the two-dimensional hypersonic similarity parameter,
McBo. It can be seen that both generalized shock-expansion theory eand
tangent-wedge theory overestimate the wave drag while impact theory
underestimates the wave drag throughout the entire range of MBg
investigated. The error for each of these methods is sizable for values
of M B8 < 1.0 but decreases as M B, increases. The two perturbation
theories have good accuracy at low values of MB, (MBo = 0.1 to 0.2)
but start becoming inaccurate as M Bg increases. The iteration in
second-order perturbation theory is seen to be effective in increesing
the range of accuracy over that of the first-order solution. Second-
order shock-expansion theory has good accuracy in the range near
MSb = 1 but becomes inaccurate at extremely low values of M 5. The
apparent regions of applicability of the various theories are as would be
expected from thelr assumptlons discussed previously. A summary of the
wave drags obtained by the method of characteristics ls presented in
figure 15 in the form of a wave-drag parameter, Cp (O.TMQF), as a function
of MPBo (ref. 15). It is seen that the wave drags correlate well with
e curve representing the mean of the values at any glven M, 5,.

The effect of varying the fineness ratio, z/dm, on the wave drag as
computed by the method of characteristics and generalized shock-expansion
theory is shown in figure 16 for bodies with an initiel lip angle of
21.156° and a diameter ratio of 0.742, and at & Mach number of 2.5.

As was mentioned earlier, the bodies wlth higher fineness ratios had a
lower stetlc pressure exlsting at the same areas., Thus these bodies would
have a lower wave dreg. The results as shown indicate that the wave drag
of open-nosed bodies of revolution (mass flows of unity) is a function of
the fineness ratioc and that a fineness ratio of at least 3 is necessary
to obtalin near minimum wave drag.

The variation in wave drag with changes in diameter ratioc is shown
in figure 17 for generalized shock-expansion theory and the method of
characteristics. The data show that the difference in wave drag as
compubed by the two theories decreases as the diameter ratio approaches
1, a result that could be expected from the assumptions of generalized
shock-expansion theory. The wave drag 1s also seen to decrease almost
linearly as the diameter ratio increases.
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Computing Tlme

The final choice of which theory to use in any glven case must be
governed by the accuracy desired and the computing time available. The
computing time and accuracy of the various theories are shown in the
following table.

Computing time,

Theory hr Accuracy
Method of characteristics 4o Best
First-order perturbation 16 Fair
Second-order perturbation 24 Good
CGeneralized shock expansion 2 Poor
Second-order shock expansion 8 Good
Tangent wedge 1 Poor
Impact 1 Poorxr

The computing times glven are for one person using a desk calculator.

A1l solutions except the method of characteristics are for 14 points on

the body. The computing time- glven for the method of characteristics is
for a solution in which the mesh size was allowed to become large

(e/r = 1.0). Such a solution will give wave-drag coefficients slightly
less than those presented in this study. If greater accuracy 1ls desired
(finer mesh size) the computing time for hand computation cen be considered
to increase in proportion toc the square of the ratio of the mesh size for
c/r = 1.0 divided by the mesh size used (¢/r < 1.0).

CONCLUDING REMARKS

The wave dreag of a family of open-nosed bodies of revolution was
computed by six approximate theories and the method of characteristics
for a Mach number range of 2.0 to 4.0. Using the results from the method
of characteristlics as a reference, the investigation showed that the
three theories vwhich required the shortest computing time, generalized
shock-expansion, tangent-wedge, and impact theories were in general the
least accurate. TFirst- and second-order perturbation and second-order
" phock-expansion theories gave more accurate results, predicting the wave
drag to within 10 percent of that from the method of characteristics over
much of the ranges of Mach number and body shapes investigated. The range
of applicability of the theories was found to vary with the perturbation
theorlies giving good results at Mbg < 1.0, Second-order shock expansion
glving good results near MBg of 1.0 with the generalized shock-expansion,
tangent-wedge, and impact theories starting to give good results at
Mbo >> 1.0. In general, considering computing time as well as accuracy,
second~order shock-expansion theory was the most attractive wlithin the
range of wvarlables investigated herein. B
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The effect of varying the fineness ratio, Z/dm, on the wave drag was
investigeted by the use of two theories, the method of characteristics
and generslized shock-expansion theory. The results of both theories
indicate that for bodies of the type investigated in thils study and having
the same initial 1ip angle and diameter ratlio, near minimum wave drag can
be obtained with s fineness ratio above 3.0.

The wave drag was also computed for bodies having various diameter
ratios with the same initial 1lip angle and fineness ratio. For these
bodies, both the method of characteristies and generalized shock-expsnsion
theory predict a near linear decrease in wave drag as the diasmeter ratio
incresases.

Ames Aeronautical Laboretory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 21, 1958
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APFENDIX A

NOTATION

For convenience the list of symbols has been dlvided into two groups,
those used throughout the paper and those used exclusively in appendix B.
Following are those symbols in the first group.

A area, sq £t

a speed of sound, ft/sec

Cp wave- drag coefficlent, EEK

Cp static-pressure coeffilcient, q:Rn

c distance from point to point along Mach lines in method of
characteristics solution divided by 1

D drag, 1b

a body dlameter, £t

1 total length of body, £t

M Mach number

P static pressure, 1b/sq ft

Pt | stagnation pressure, lb/sq £t

a dynamic pressure, lb/sq £t

r radial distance dlvided by 1

8 distance along Mach lines in method of characteristics

U free-stream velocity parellel to x axis

U exlal component of velocity

v radial component of velocity

X distance along axis of body from origin divided by 1

B M2 -1

¥ ratio of specific heat at constant pressure to specific heat

at constant volume
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5] stream angle, radians
1 parsmeter relsting body shapes (see eq. (9))
6 shock-wave angle, radiens
A b
M Mach sngle, sin™— %, radians
o mass density, slugs/cu £t
) perturbation potential
Subscripts
b body
m maximum geometric characteristic of body
o characteristics of body at oxrigin
P perturbation quantities
e free-stream conditions

The following symbols are used exclusively in appendix B which Iists
the equations used in calculating the wave drag by the method of character-
istics.

ce distance along first family Mach line from computed point to
immediately preceding upstream point divided by 1

Cg distance slong second famlily Mach line from computed point to
immediately preceding upstream point divided by 1

n number of the computed point
(The number sequence proceeds from point nearest body to shock
weve and from rey to ray in downstream direction (see fig., 1).)
N number of points in input ray (N = 5 in fig. 1)

€ a small arbitrary number indicating closeness of approximation
in iterative methods
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Subscripts
charecteristics at point whose number is n-1 and which
lies on first family Mach line immedia$ely preceding
computed point
characteristics at polnt of number n

characteristics at point whose number 1s n+1l-N and vhich
lies on second family Mach line immediately preceding
computed point

characteristice at point whose number is n-N and which
lies on shock wave immediately preceding computed point
on shock wave

number of iterations

Superscripts

iterations
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APPENDIX B
CALCULATIONS BY METHOD OF CHARACTERISTICS

Solutions by the method of characteristics presented in this paper
were computed by an automatic digltal computing machine. The equations
used. in the solution are also applicable to menual computation. They
are therefore listed and discussed herein for ready reference of the
interested reader.

In the application of the method of characteristics to the calcu-~
lation of the static pressure on a body of revolution, the axielly
symmetric flow field bounded by the body surface and the nose shock wave
1s subdivlided by a network of lines lnclined to the local streamline
at the local Mach angle (see fig. 1). Points are defined as the inter-
section of a palr of such lines (fleld points), the intersection of a
line with the body contour (body point), or the intersection of a line
with the shock wave (shock-wave point). A ray is defined as the line
containing a series of polnts connected by first family Mach lines.
Thus in figure 1, points 1 to 7 and 8 to 14 lie on two separate rays.

Two types of equations are required in the solution, those which
define the coordinates of the point and those which define the aero-
dynamic properties at the polnt. The calculation of the coordinates
and eerodynamic properties proceeds from point to point along a ray,
commencing at the body and ending at the shock wave, and then from
ray to ray in the downstream direction until the end of the body is
reached. In the following discussion, the equations will be grouped
according to whether the point is on the input ray, or a field, body,
or shock-wave point downstream of the input ray. The equations are
glven 1n terms of an arbitrary point so they can be used in the
repetitive type of calculation required by the method of charascteristics.

Characteristics of Points on Input Ray

The input ray is located on a first family Mach line sufficiently
close to the nose of the body that the flow propertles at the points can
be obtained with the assumption that the shock wave 1s two-dimensional.
In the present case the input ray intersected the body at xy < 0.00L.
The coordinates of points on the input ray are -

(B1)

g o Nm o1 I‘b'xbtan(l-l+5)‘1‘o:l
D= N1 ™ ¥ F-T | Gam o-tan(ed)
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and
N-n n-1 [[rp-xpten(p+d)ltan 6-rotean(p+s)
Tp = ——— Tp + B2
s N-l.{ tan O~tan(u+d) (22)

vhere © 1s the two-dimensional shock-wave angle corresponding to a
deflection equal to 8y and p and & are the flow characteristics
behind the wave.

It should be mentioned that the equations discussed hereinafter are
adsptable for determining the entire flow field sbout a closed-nosed
body of revolution as well as the open-nosed hodies studied in this peper.
In the former case, the flow behind the nose shock must be supersonic.

Characteristics of Field Points

The equations for the coordinates of the field points are:
Xo=Xf+rgcot(u=8) g+rreot{p+d)

o = cot(u-8) g+cot(p+d) ¢ (83)

Xp = (rg-rp)cot(p-8)g+xs (B4)

The dlstances along the Mach lines from the calculation point to the
preceding known points are given by:

Tn-rf _
sin(p+d)p

Ta=

) (B6)

sin(u-8)g

The first snd second family compatiblility equatlions, equation (2)
in the body of the paper, are put in finite difference form expressing
the difference between the serodynamic properties at point n and the
Preceding pointe along the first and second family Mach lines, and are
solved simultanecusly to give for the stream angle at point =n

o -2 [0.0.6069;

cp(A sin p sin 8)e . ce(N sin u sin 8)g

rf - I‘S

cp = (B5)

(B7)
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and the static-pressure ratio

<§%>n= 7\0[511'55 ) cg(sin : sin B)S] (88)

8

Assuming the total pressure to vary linearly with distance normal to
streamline snd the varistion of stream angle to be small in the vieinity
of point n gives

@) () @@, @
Pteo/n cpsin ppeicgsin s \Pho/f| \Ptw/f

The ratio of local static pressure to local total pressure is

Q.- @6

from which
=Y
and hence
w, = sin”* 'r%.? (B12)

Characteristics of Body Points

The body point n. is at the intersection of the second family Mach
line from point n + 1 - N and the body contour. Hence the coordinate
equations are dependent on the anslytic expression for the body contour.
If the expression is not simple, en explicit solution of the inbersection
point msy be impossible, as in the present case. In such cases Newton's
approximation can be used to solve for the axial location of the point
as follows. Iet the difference between the body radius and the radial
distance of the second family Mach line from point n + 1 - N at the
same value of x be expressed as

£(x) = rp(x)-rg+(x-xg)tan(u-3)s (B13)

where rb(x) is the analytic expression for the body contour, so that
at point of intersection :

£(x,) =0 (B14)
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To solve for x,, let X = X3 = xg and solve

x2=x-—£$_L.=xl-—i}-cL)—- (Bl5)
af(x)/ax df (xy ) /ax

Repeat thils operation letting x = X, and continue until
X{-X{-1 < € (B16)

The value of xpn i1is teken to be xi. Then the radius at the inter-
section point is :

Tn = rg-(xn-xg)tan{p-8)s (BLT)

The distance along the second family Mech line from point n +to
the preceding point, cg, is given by equation (B6) and the stream angle,
8n, is glven by the slope of the body contour. These two values are used
in equation (B8) to determine the static pressure on the body at point n.
The static~pressure coefficlent is then given by

_ (B/p)n-1

(B18)
(r/2)M2

Since the body contour is a streamline, the total pressure remasins

constant along the body. The remaining flow characteristics are

determined from equations (B1O) to (Bl2).

Characteristics of Shock~Weve Point

The shock-wave point, n, is at the intersection of the Ffirst family
Mach line from point n-l and the shock wave from point n-N. The
.coordinates are given by
Xytan Oy-xetan(p+d) prrp-ry
Xp = (319)
tan Oy-tan(pu+d)e

Ty = (xp-xe)tan(p+d)pire (B20)

The distance along the first famlly Mach line, cp, is given by equa-
tion (BS).

A simple explicit relation involving the stabtic pressure and
deflection angle immediately behind a shock wave is not avallsble. I%
1s therefore impractical, and probably impossible, to determine the static
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Pressure and deflection angle at the shock-wave polnt by solving simul-
taneously the equation relating pressure and deflection angle across the
shock and the one compatibility equation available. Tterstive methods
are therefore used. The compatlbility equation available is

o
&y = Po/? \Po/n + B - ce(sin p sin 8)p (B21)
Ag Te

To commence the iterative procedure s let

@)= @) - @) <2

and find Bp' from equation (B21). The stream angle Bn' is taken
as the deflection angle for a two~dimensional shock wave at point n
and the shock-wave angle computed from

sin®6n'+g sin%on'+h sinep'+j = 0 (B23)

where

M002 ") 2. 3
- = 7 sin™3,
M2
h - M 4L + | 1)2 + ﬂ]sinz ' (B2k)
1
i=- coszﬁ
Mo J

Equation (B23) is solved most readily by Newton's approximstion.
Briefly let

®
Il

£(6') = s1n®0'+g sin%g'+h sin2g'+j (B25)

so0 that at point n

£(0') = £(6n') = 0 (B26)
To solve for 6,', let 0' =6,' = 6, and solve
sin29,! = gin2g' - £(e') = sin2ell - f(elt)
ar(e')/a sin2g! af(6,')/d sin 6;"

(B27)
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Repeat the operation letting 6' = 6,' and continue until
8i'-61-1' < € (B28)
The value of 6yp' is taken to be 61'.

The static-pressure ratio across a shock wave corresponding to a
glven shock-wave angle is

_:E_ - 271'1&)2511'126-_(1-& (329)
Dy 7+l

The statlic pressure at point n 1s then teken as

1 ] 2 P
D _1 <‘E'>n R 2yMPain2g-(y-1) B30
(p“)i 2| \Pe 7+1 (B30)

®.-@,

in equation (B21) and solve for B,". The process involving equations
(823) to (B3l) is repeated until .

Tet

Bpl-8pl-t < e . (B32)

i
%)ﬂ ) @;)n (B33)

p = Bp*
The total pressure loss through the shock wave is glven by

2,2 "}'—L:L' L
(.P%)n o | (it sin g, G&)ﬁ (B34)
P (7-1)M2sin®gn+2 og

Then

The remainder of the aerodynamic characterlstics are found by means of
equations (B1O) to (Bl2).
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Mesh Size

Accurate solutions of the method of characteristics require that
the distance between points, mesh size, be small. However, when the
mesh size, c/r, becomes large, it 1s necessary to lterate the points
affected. This iteration consists of averaging the aerodynamic properties
of the known and computed points, assigning them to the coordinates of the
known point and recomputing the computed point. In the actual machine
computation, a c/r of 0.25 was used as the criterion for iteration when
N = 10 and 0.10 vhen N = 20, and the iteration was performed only once.

The computing time (on an IBM 653) for 10 and 20 point solutions
was 3/L and 3 hours, respectively. For curved bodies, the difference in
static-pressure coefficient distribution from 10 and 20 point solutions
was insignificant. For straight bodles, however, it was found necessary
to start at x < 0.001 in order to obtain a pressure distribution with
no discontinuities.
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(a) Generalized shock-expensicn theory. (b) Method of cheracterlstics.

Flgure 11.- The variation of static-presgure Soefficient with local-aree retio for bodies of
verying fineness retio; 8y = 2L.156 ; Mo = 2.5; diameter ratio = 0.742.
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(e) Generalized shock-expension theory. Locel orea rafio , Ap /A (b) Method of characteristics.

Flgure l2.~ The varlstion of static-pressure coefficient with local-aree ratic for bodies of
varying diameter ratlio; 8y = 21.156; M, = 2.5; fineness ratio = 5.0.
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Figure 13.- The variation of the external wave-drag coefficient as & function of the lip-angle
parameters; fineness ratio = 5.0.
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g9ty NI VOVN

s



5 __-|Generalized shock-expansion theory
Tangent—wedge theory

4 %%

o
2
e 2
§ cond-order perturbation theory.
FoR R S =i (RIBIGH] A FHIRIR EEL}
g
= First-or i
5 -2 \\ ( i der perturbrhon 1
_ ‘4' Second- order shock-expansion theory —
SN
& w Impact theory
s L&
-0 l
—12
o] 4 B 12 1.6 20 24 28

Similarity parameter, Mo 3.,radians

Figure 1.~ Brror of the verious approximate theories with the method of characteristics as a
reference for bodies having a fineness ratio of 5.0 and a dlameter ratio of 0.T7h2.

g9tk ML VOVN




Wave drag parameter, CD(O.TMaE)

40
30 : ZEsRan == gE=ss=ss=s-coisl = == = 5
20 oL
10 BYE E= H e 5 b i e SN et -
B8 5
o e : SEEE :
4 =n g -
.3 == = - - > ¥ =E
3= e =
2
10 Aty = frre 0 Tt et ar = o g
o8 i
,06 === E 4 b
05 B =======1:.ﬂ:::::44
04' 1 g i e I
03 B &g + EH az = e e e
o B . i

0 2 4 16 I8 - 20

o
ho
»
o
[+

Similority porameler, M 8o, rodions

Fgure 15,- Correlation of wave-drag coefflcients obtained by the method of
for do/dpy = 0.742 and 1/dm = 5.0.
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Figure 16.- The variation of external wave-drag coefficient as a funcition of
fineness ratio for &, = 2l.l56°,' M, = 2.5; diameter ratio = 0.742,
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